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A b s t r a c t  Viewpoint. In this viewpoint memory does not consist 

A multiprocessor system, under design for 
space-station applications, makes use of the 
latest generation symbolic processor and 
packaging technology. The result will be 
a compact, space-qualified system two to 
three orders of magnitude more powerful 
than present-day symbolic processing sys- 
tems. 

1 Symbolic Computing 
The tasks for which symbolic computing is uniquely 
qualified are different from those served well by con- 
ventional numerical computing. Conventional pro- 
grams tend to be uniform, simple, homogeneous, and 
numerically intensive. Symbolic programs, on the 
other hand, are diverse and heterogeneous, involv- 
ing a variety of mechanisms and conceptual tasks 
within a single program. A single symbolic comput- 
ing application, for example the management of an 
autonomous space vehicle, will have to perform a va- 
riety of tasks such as hierarchical classification, signal 
interpretation, hypothesis formation, matching, and 
logical inference; not to mention conventional numer- 
ical tasks. It will have to employ a variety of different 
mechanisms such as rule-based programming, frame- 
instantiation, constraint propagation, numerical simu- 
lation, object-oriented programming, symbolic math- 
ematics, and truth maintenance; all within a single 
large system. 

The popular notion of an AI program as a single, 
simple rule interpreter is a gross oversimplificat,ion. 
In fact, symbolic computing places much more serious 
demands on the system architecture than would be 
presented by the need simply to to support a simple 
rule interpreter. 

of a stream of raw bits organized into bytes or words. 
Rather, it consists of much larger conceptual entities 
which are thought of as objects. An object might be 
something simple like a list, an array, an integer or 
it might be something with higher semantic content, 
for example, a node in a semantic network or a data 
structure representing an entity in the real world. 

These objects should have an identity. This means 
that you should be able to tell the type of an object, 
just by looking a t  it. In addition, one should be able 
to tell its location in memory. The techniques that are 
used to do this are called storage conventions. Ideally, 
the hardware should guarantee that the storage coil- 
ventions are never violated. 

The object-oriented viewpoint depends upon the 
ability to make memory seemingly infinite, in the 
sense that there will always be room for allocating new 
objects. Indeed, the goal is t o  free the programmer 
from worrying about where objects are allocated and 
when they are deallocated. In practice, this means 
that the system needs to support garbage collection, 
the process of reclaiming unused storage. It is uec- 
essary that unused storage be reclaimed at  a rapid 
enough rate so that free storage is always available. 
Garbage collection means that the symmetry of stor- 
age is maintained; to the programmer, all storage is 
the same and its always available. 

The second major feature of the object-oriented 
viewpoint is that the programmer codes using Generzc 
Operattons. A generic operation is defined as an ab- 
stract, conceptual operation which does not reflect the 
limitations of the hardware. For examplc, adrli1.ion is 
a conceptual operation which is meaningful to apply 
to integers, floating-point numbers, vectors, polyno- 
mials, etc. Ideally, there should be a single operation, 
called PLUS, which does all of these, dispatching 011 
the type of the objects being added to determine how 

1.1 T h e  Objec t -Or i en ted  Viewpoin t  to perform the Operation. 
A viewpoint of a computer that is characteristic of 
symbolic computation is called the Object-Orzented 

‘Iloward Slirobe is also a Principal Research Scientist 

Modern symbolic computing hardware allows this 
viewpoint to be supported emciently, I t  is 
ware’s job to check every operat,ion and decide how 
to perform it. based upon the types of the operands. 
So in eKect that hardware will tell itself: “That’s a at tlie M I T  Artificial Intelligence I A o r a l o r y .  
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fixed-point number and therefore I should do integer 
add,” or, “That’s a floating point number, I should be 
performing floating point add.” Or, “It’s an extended 
number that I can’t directly support at  all, but I can 
support it by this sequence of other instructions.” 

In addition to higher level code, this approach 
leads to better debugging capability and supports the 
concept of incrementality. Since dispatching on the 
operand type is a runtime function, a new data-type 
may be added by simply defining the generic opera- 
tion upon the new type. Existing software can now 
use the new data-type without recompilation. Any 
attempt to do an invalid operation on any particular 
piece of data is detected by the hardware, allowing 
the programmer to enter a debugging session in the 
context of the error. 

2 Ivory 
Symbolics is now implementing a new generation of 
symbolic processing architectures built upon the Ivory 
processor. Ivory-based architectures represent the 
state of the art in satisfying the requirements of sym- 
bolic processing, as described in the previous section. 
In particular, Ivory supplies the following. 

Runtime type checking - Parallel tag processor, 
late-branch ROM and comprehensive trap logic 
support generic arithmetic and pointer manipu- 
lation. 
Virtual Memory Support - On chip translation 
buffer, microcoded cache-miss backup and the 
support of CDR-coded lists (more compact phys- 
ical memory representation). 
Specialized Lisp operations - Pipelined memory 
interface and high level microcoded primitives 
support efficient implementation of operations 
such as CAR and CDR. 
Garbage Collection ~ On chip hardware to fa- 
cilitate efficient GC algorithms such as the 
Ephemeral GC [Moon, 19841. 
Fast call and return - Specialized datapaths, par- 
allel operations, and fast cycle time support the 
complex calling strategies required by Lisp. 
Fast “vector” instructions for garbage collection, 
data-base searching and graphics applications. 
A fast coprocessor interface, primarily used to 
provide high floating point performance. 
A programmable interleaved memory interface to 
allow a wide range of memory system speeds and 
architectures to be used - ranging from small 
high speed caches to four-way interleaved stan- 
dard hlOS memories. 

Data Architecture 

object reference or is part of the representation of an 
object. A machine word contains 40 bits, which are 
assigned as in Figure 1. 

2 6 
Bits Bits 

32 
Bits I CDR I Data I Addressor 

Code Type Immediate Data 

Figure 1: Ivor) Memory Word 

The data t y p e  f ie ld  indicates what kind of informa- 
tion is stored in a word. The cdr-code f ie ld  is used for 
various purposes. For header data types, the cdr-code 
field is used as an extension of the data-type field. 
For stored representations of lists, the contents of this 
field indicate how the data that constitute the list are 
stored. This results in a compact representation of 
lists. The address o r  immediafe d a t a  f ie ld  is inter- 
preted according to the data type of the word. This 
field contains either the address of the stored repre- 
sentation of an object, or the actual representation of 
an object. 

Ivory supports the rich variety of objects found in 
symbolic processing environments as described in the 
previous section. General Lisp data structures such as 
symbols, lists, arrays, strings, and characters are all 
directly manipulated by the instruction set For nu- 
meric data types, Ivory includes very efficient support 
(immediate object representation) for 32-bit integers 
and 32-bit IEEE single-precision floating point num- 
bers. It also supports infinite precision integers, G4- 
bit IEEE double-precision numbers, rational numbers, 
and complex numbers. 

2.2 Virtual Memory 
Ivory implements a 4 gigaword virtual addrcsss space. 
The 32-bit virtual word address is divided into a 24- 
bit virtual page number and an &bit page offset. The 
virtual page number i s  mapped via the P a g e  Hash  
Tab le  (PIIT) to get a 24-bit physical page niiinber. 

\Vhile the 25G-word page size may seein sillall by 
traditional processor standards, it is appropriate for 
symbolic processors. Symbolic processors tend to have 
many small functions, small data objects, and little 
locality of reference. These factors teiid to liniit the 
advantages of a larger page size, and the smaller page 
size allows better allocation of physical nieiiiory 

2.3 Garbage Collection 
The Ivory mrinory architecture supports two meth- 
ods for garbage collection (CC). Both strategies are 
incremental i n  nature arid identical to the Syinbolics 
3G00 impler~irntation [Rloon, 1981; hloon. lOS51. ‘The 

In line with the requirements of the object-oriented 
viewpoint, every word in memory contains either an 

two methods differ iiihow they decide to actuaily re- 
claim storage. In  hoth cases the garbage collectioii 
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process condemns or identifies storage it would like 
to reclaim. This storage is considered to occupy old 
space while other storage is termed new space. If the 
processor attempts to read an object reference to old 
space, a trap will be taken and the Dansporter will be 
invoked. This is a software routine which copies the 
storage containing the object representation into new 
space. I t  also updates the pointer to the old object 
in memory to point to the copy of the object in new 
space. In order to signal the trap which invokes the 
transporter the memory interface looks a t  the data 
type of a word to determine if it is a pointer, and if 
the address field points to old space. 

The Dynamic GC is used to reclaim objects that 
have lifetimes on the order of tens of minutes to hours 
and days. I t  performs a single linear scan of all of new 
space, reading every memory word. During this scan 
the memory interface will cause the transporter to be 
invoked if the word is a pointer to old space. At the 
end of the scan, all of new space must point only to 
new space and the storage used by old space can be 
reclaimed. This scan is done incrementally so as not 
to hurt interactive performance. 

The Ephemeral GC (EGC) is used for reclaiming 
objects that have lifetimes of the order of seconds to 
minutes. This scheme is based on the observation that 
most of the objects created in the system have a rel- 
atively short lifetime. The EGC attempts to reclaim 
the most recently allocated objects by breaking up 
storage into levels, corresponding to how recently an 
object was created. Ephemeral GC requires the mem- 
ory system to maintain a database of pages which con- 
tain pointers to  a more recent level. When the EGC 
condemns the most recent level it uses the database to 
scan only those pages which potentially contain point- 
ers to the condemned level. To support this, the mem- 
ory interface must notice when it is writing a pointer 
to a more recent level into a page. In Ivory, this infor- 
mation is maintained in the PHT for pages which are 
in physical memory, and in a companion structure for 
pages which reside in secondary storage. 

2.4 Stack Execution 
Ivory uses a stack-based model of execution. The 
stack is divided into frames, one for each active func- 
tion. The stack is used for passing arguments, al- 
location of local variables, and intermediate results 
of computations. A stack frame is indexed by three 
pointer registers; the frame pointer (FP), the local 
pointer (LP), and the stack pointer (SP). 

The frame information consists of two words; the 
offsets of the LP and SP registers from the FP, and 
the continuation of this frame. The continuation is 
either the return address of this function, or the nest 
function to call. The F P  is used to access the frame in- 
formation and the arguments to  the function. The SP 
is used to access intermediate results of cornpulat~ions. 
The LP must be distinct from the FP  because argii- 
ments are pushed by the caller, and may be pushed in 

I Local 
Variables 

Arguments 

Frame 
Information 

Figure 2: Ivory Stack Frame 

several different ways 

2.5 Instruction Set 
Ivory performs different operations depending 011 the 
data-type of the word that is fetched as an instruc- 
tion. Most object references push themselves onto the 
top of the stack. This capability is used to supply ful l  
word constant operands. A special data-type is used 
to push the contents of the word whose address is spec- 
ified in the address field of the instruction word. Other 
data-types are allocated to perform specialized types 
of function calls. There are data-types for calling coni- 
piled functions and generic functions using the address 
field to point to the function. A further type is used 
to call the contents of a memory word as a fuuction. 
This is used to implement dynamically linked fiinc- 
tions. Finally there is a set of 16 data-types which 
are further decoded into two “packed” iiistriictions. 
The 32-bit immediate data, along with 4 hits from 
the data-type field are combined to form two 18-bit. 
instructions. 

The Ivory instruction set incorporates ful l  run-tiinc 
error and exception checking. Esceptions are cases 
which are not an error, but cannot he handled by 
the processor hardware without, software intcrvent ion. 
The checking performed by the instruct io11 srt i i i -  
dudes full checking of data-types, sub 
uninitialized variables, undefined functi 
tection of integer and floating-point overflow. 1:scc.p 
tions are handled by causing a trap t.hrough ii vector 
in memory. 

Even though strict error-clic~rking pcdoniicil  is by 
the instriirtion set, i t  is possihle to esttwd l l i c  i i i s t r u e  
t,ions supplied to handlr new object, t y p w .  13y ritiliziiig 
escept.ioii handlers and the N C W  Flavors [hloon. 1 Mti] 
object-oricnt,ed programming syato i i .  i t  is possiil)I,- I C >  
drfine a nrw ol)jt.ct t y p  that I I I ~ I S ~ I I ~ ~ ~ ~ I ~ ~ C S  a s  i i i i  PX- 

isting type i i i  all progranis. C‘oiivcrrrly i t  is Iwssil~le 
to t.rt.a t t lie a rcl I it.cc t .ura I l y-dc f i  iivd ( la  t.a- t y pc 
of thc  object-orirntrd systcni. This ~wriiiits I I I C  t l c r -  
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Figure 3: Ivory Pipeline Stages 

inition of generic functions (as described in the first 
section of this paper) which can operate uniformly on 
instances and objects with different data-types. 

2.6 Microarchitecture 
The Ivory microprocessor implements a 4-stage 
pipeline as shown in Figure 3. The first stage fetches 
the instruction, decodes it, and adjusts the program 
counter. The second stage fetches the initial microin- 
struction, computes the operand address, and ad- 
justs the stack pointer. The third stage fetches the 
operands and computes the result. The fourth stage 
stores the result, unless a fault has occurred, in which 
case it restores the state of the third stage. 

Instructions spend only a single cycle in the first two 
pipeline stages, but can spend an arbitrary number 
of cycles in the execute stage. Simple instructions, 
such as PUSH,  A D D ,  and EQ execute in a single cycle. 
Conditional branches are resolved in the second (D) 
stage. A taken conditional branch executes in two 
cycles; a not-taken branch in one. 

Figure 4 shows a block diagram of the Ivory CPU. 
Instructions are fetched directly from a 32 word (up to 
64 instructions) direct-mapped instruction cache. The 
cache, which is filled by an autonomous prefetcher, 
serves to  buffer instructions arriving from memory and 
hold small program loops. A bypass path provides the 
instruction directly from memory when the first stage 
is stalled on a cache miss. 

The operand address calculation data path con- 
tains the stack frame pointer registers and a 32-bit 
adder/suhtractor. It computes the address of the 
operand and stack pointer adjustment according to 
the macroinstruction. This data path is also usrd in 
parallel with the main data path to accelerate function 
call/return. 

The main data path contains a 128 word topof- 
stack cache, a 32-word scratchpad (whlch contains a 
tluplicate of the top word on thr stack i n  a fixed lo- 
cation), the A L U ,  and tag checking logic. 'l'hr ALU 
includes an add(.r, boolean unit, sliift/iriask logic., and 
support for onc-hit-per-cyclr iritrgrr riiiiltiply/~livi~lr. 

Tag checking is done in parallel with with the ALU op- 
eration, so that in the common cases no time penalty 
is paid for type checking. Similarly, ECC checking of 
data from memory is done in parallel with the ALU us- 
ing the on-chip ECC logic. Bypass paths for both the 
top-of-stack cache and scratchpad forward the result 
of the previous instruction to  the ALU as necessary. 

The Ivory processor supports a pipelined memory 
bus which can have up to four outstanding requests 
a t  once. An associative queue of outstanding request 
addresses is maintained for detecting when instruc- 
tions arrive from memory and installing them into the 
instruction cache. The memory interface protocol is 
implemented by an independent state machine which 
arbitrates between on-chip users of the memory sys- 
tem and other bus masters. 

3 Multiprocessing with Ivory 
In addition to the features of Ivory described in the 
previous section, there are several design features of 
the Ivory processor specifically intended to support 
multiprocessor architectures. They are: 

Support for Futures. 

Support for Special Variable Binding. 
Synchronization primitives 

3.1 Futures 
Futures are a Lisp language construct which appear 
in parallel extensions to Lisp such as MultiLisp [Hal- 
stead, 19851 and QLISP [Gabriel & McCarthy, 19841. 
A future is a compound structure which represents 
a promised value coupled with a process that com- 
putes the value. The future is a first class data struc- 
ture which can be stored in other data structures, 
loaded and stored even though the process computing 
its value has not terminated. However, if the value 
of the future is ever required for a computation (e.g. 
it is one input to an arithmetic operation) then the 
processes attempting to iouch the future bloclts until 
the future's value is delivered. This facilitates a very 
flexible, demand driven style of parallel processing. 

Ivory provides a special hardware datatype for fu- 
tures which is known about by the microcode and 
the tags processor. This datatype acts as an  invisi- 
ble pointer; if a future has been delivered, the instruc- 
tion attempting to use its value is not interrupted, but 
simply follow the future pointer to  its actual value. If 
the value has not been delivered, the hardware causes 
a trap; the operating system can then suspend the 
requesting process until the value is delivered. 

Without the hardware support provided for the fu- 
ture datatype, the compiler would have to emit code 
to check tlie datatype of eve ry  value manipulated by 
the prograrn. This is because any value might be a 
future. Experiments with the QLISP system a t  Stall- 
ford Uriivrrsity haw shown that this leads to uuac- 

ORIGINAL PAGE IS 
OF POOR QUALITY 

156 



ORIGINAL PAGE IS 
OF POOR QUALITY 

STATUS 

Bus 
Control 

I 

Address mii 
Registers t i  

PCS 

Map Instructio Prefetch --c Cache -- 
I 1 

ADDRESS 
U 

Figure 4: Ivory Processor Block Diagram 

ceptable overhead in their implementation on stock 
parallel processing hardware. 

3.2 Special Variable Bindings 
Lisp allows two types of variable bindings. Lexical 
binding of variables is the type familiar in all block 
structured languages. Dynamic binding (also known 
as special binding), however, changes the globally ac- 
cessible value of a location through the dynamic ex- 
tent of the binding. This change, however, is visible 
only within the process which bound the variable; all 
other processes see either the global value or their own 
dynamically bound value. 

Classically, special variable binding is performed us- 
ing shallow binding. This involves overwriting the lo- 
cation with its newly bound value while saving the old 
value in a special stack. Shallow binding optimizes the 
speed of access to the variable. Shallow binding can 
be (and is) used in sequential machines that support 
multiple processes. When a process relinquishes con- 
trol of the processor, its special variable hindings are 
undone; the process which gairls control of the pro- 
cessor must firsl cstahlish its spccial variable hindings 
before heginning its execution. ‘This rnakes processrs 
switcliing costly, ever1 for srquential rnachinr:s. 

In the parallel processing world the shallow bind- 
ing technique doesn’t work at all. This is because 
two distinct processors can be concurrently executing 
separate processes each of which wants to bind the lo- 
cation to a unique value. Since shallow binding works 
by overwriting the single location there is no way for 
two processes both to bind the same location. 

This forces the use of the much slower deep bind- 
ing technique for special variables. In a deep binding 
scheme, each process maintains an ordered mapping 
between locations and bound values. The mapping 
must be ordered since a process can repeatedly rebind 
the value of a single location and the latest binding 
should hold. This data structure must be sequentially 
searched for a variable binding; this is typically a very 
slow process. 

Ivory provides hardware support to optimize deep 
binding. A special datatype, called bound locnlron, 
is used to indicate that a location has been dynan- 
ically bound. Whenever Ivory encounters such a 
datatype, it traps to a microcode routine that searches 
a hashtahle for the value of the binding. The liaslitahle 
uses a key derived from both the identity of the Ijind- 
ing process and the address of the location bound. 
The binding and unbinding instructions keep this liasll 
tahlo u p  to date. A probe into this table is very fast; 
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Commercial VHSIC VHSIC 
1.6 micron 1.25 micron 0.5 micron 

VHSIC 
0.25 micron 

Figure 5: Relative sizes of a single Ivory processor in four different technologies. 

if there is no entry in the hash table, then a classic 
deep binding search is initiated. 

This technique has two advantages over the tech- 
niques possible without datatype checking hardware. 
First, for locations which have not been dynamically 
bound, there is no cost above that of shallow binding, 
since the special techniques are only invoked for loca- 
tions whose datatype is bound locafion; these mark- 
ers are only placed in a location that is dynamically 
bound. The second advantage comes from the hard- 
ware assisted hashing used to fetch the binding. In 
conventional processors neither of these techniques are 
available. The lack of the bound location datatype is 
particularly critical since any location may be dynam- 
ically bound and hence any load or store must check 
for this. 

3.3 Locking and Synchronization 
Parallel processing in the presence of side-effects re- 
quires techniques for establishing critical regions, mu- 
tual exclusion from data structures and joint synchre 
nization of processors to rendezvous points. These are 
very difficult to achieve efficiently without hardware 
support. Ivory provides a sfore conditional instruction 
that can serve as the basis for all of these facilities. 
Store conditional takes three arguments; the first is 
a location, the second two are the new value and the 
test value. If the location currently contains a value 
EQ to  the test value, then the new value is stored in 
the location. The value returned by the instruction 
can be tested to see if the store succeeded. 

Semaphores, atomic updates and locks can all be 
implemented using this single atomic update primi- 
tive. 

4 Technology for a Spaceborne 
Processor Architecture 

The ultimate Spaceborne VHSIC multiprocessor will 
result from a combination of the powerful computer 
architecture ideas of Ivory with evolving VIISIC hard- 
ware technologies. At each stage of this evolution, the 
overall performance, integration and reliability of the 

system will be increased. Three hardware technologies 
are particularly important: 

Fine-line VIISIC chip technology, moving froin 
1.25 micron, to  .5 micron and finally to .25 micron 
Rad-Hard CMOS. 
Super-chip technology which integrates a signifi- 
cant portion of the total system onto a single large 
die (2 inch square), using redundancy tecliuiques 
to achieve adequate yields. 
Button-Board System Packaging which allows 
very dense packaging of boards into modules 
without the use of backplanes and connectors. 

4.1 Chips and Superchips 
The first commercial Ivory chip is implemented in 1.0 
micron CMOS technology and runs with a cycle time 
in the vicinity of 150 ns. At this clock rate Ivory’s 
performance is roughly 3 times that of the Symbolics 
3600. A second version of Ivory is now available with 
cycle times in the vicinity of 100 11s. 

Radiation doses as high as lo5 rads are espectcd 
in the space station environment. Since mechaui- 
cal shielding takes up space and weight, the use of 
rad-hardened technology is preferable. \’IISIC pro- 
vides a CMOS technology with adequate radiatiou re- 
sistance for space-station applirations. In additioii. 
error-correcting logic on the memory bus of Ivory (nl- 
ready provided in the coniniercial versioii of IvoIy) 
may be enhanced for increased reliability to single 
event upset (SEU). 

Figure 5 shows how the die size for an Ivory c111p 
will shrink as it is reimplemented i n  newer \‘IISIC 
technologies. Since Ivory is implemented in a twhuol- 
ogy independent design system, it can be rctargctd 
to these new technologies i n  a matter of (lays tlirougli 
a totally mecliaiiical process. These delist, procesws 
also allow the cycle time to be rcduccd: cyclr- tiiiwh 
below 50 ns slio~ild bc a c l i i ~ ~ v a b l r  with t11c . 5  ~ i i i c r o i i  
process. 

Figure 0 sliows the outliiir of a super-clii~~ c o i i t ; i i i i -  
ing Ivory chips iniplrmriited i u  .5 atid .25 i i i i r ro~~ t ~ l i -  

irology. Even w i t l i  srvcral rcdriiidnut col)ich 0 1  [ l i t ,  
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Figure 6: Ivory processors in a superchip 

Ivory die, the superchip contains room for an exten- 
sive cache memory. The advantage of this approach 
is that the cache can be more closely coupled to the 
processor, avoiding the delays associated with crossing 
chip boundaries. 

Using this technology also allows the chip architec- 
ture to evolve further, leading to additional perfor- 
mance improvements. Such processors should be ca- 
pable of performance in the range of 15 to 20 times 
that of the Symbolics 3600. 

For small to modest scale parallelism, two inter- 
connection technologies are appropriate. For system 
of 4 to 6 Ivory processors, a shared bus with snoop- 
ing caches is capable of providing adequate bandwidth 
and a coherent memory image shared by all proces- 
sors. However, a single bus system is not attractive 
when fault-tolerance considerations are added in. 

A cross-bar interconnection scheme can support a 
larger number of processor (up to 32) and provide 
greater fault tolerance. Figure 7 shows an example 
of a crossbar interconnect. 

4.2 Button Board Interconnect 
Duttoiiboard Packaging is a new technology a t  ’ I W V  
which provides performance and density iniprove- 
ments over those possible with conventional packagrs. 
Buttonboard packaging replaces bulky edge coniicc- 
tors with “button”-shaped contacts and small I’C- 
board strips with low int,erconnect density and f w  
layers. Buttons may be placed anywlicre on ;i cir- 
cnit board to provide ail interconnect hrt.wrwi boards 
This allows a reduction of the path Irnglh of i n l w  
board signals, thereby reduring propagat ion delays. 

I n  the envisaged design, compoiiciil.-carryiiia l )oards 
alternate with signal-ront.itig boards i n  a stack wliirli 

is fastened together to make a monolithic whole. Re- 
sults of prototype testing seem to indicate that a 
buttonboard-based design will easily meet electrical 
and mechanical requirements for the space station. 

Figure 8 shows how a crossbar system can be i n -  
plemented using button board packaging. One inter- 
esting feature of this packaging technique is that ad- 
ditional processors (or memory) can be added sini- 
ply by dropping in an additional processor card. A 
full scale SVMS system should therefore capable of a 
peak performance of greater than 500 times that of 
the Symbolics 3600. 
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Figure 7: A crossbar interconnect. Processors are labeled P ,  memories M. 
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